Jordan Triple Higher (σ,τ)-Homomorphisms on Prime Rings
نویسندگان
چکیده
منابع مشابه
Generalized Jordan Triple Higher ∗−Derivations on Semiprime Rings
Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...
متن کاملJordan Triple Elementary Maps on Rings
We prove that Jordan triple elementary surjective maps on unital rings containing a nontrivial idempotent are automatically additive. The first result about the additivity of maps on rings was given by Martindale III in an excellent paper [7]. He established a condition on a ring R such that every multiplicative bijective map on R is additive. More precisely, he proved the following theorem. Th...
متن کاملAdditivity of Jordan Triple Product Homomorphisms on Generalized Matrix Algebras
In this article, it is proved that under some conditions every bijective Jordan triple product homomorphism from generalized matrix algebras onto rings is additive. As a corollary, we obtain that every bijective Jordan triple product homomorphism from Mn(A) (A is not necessarily a prime algebra) onto an arbitrary ring R is additive.
متن کاملOn Jordan Isomorphisms of 2-torsion Free Prime Gamma Rings
This paper defines an isomorphism, an anti-isomorphism and a Jordan isomorphism in a gamma ring and develops some important results relating to these concepts. Using these results we prove Herstein’s theorem of classical rings in case of prime gamma rings by showing that every Jordan isomorphism of a 2-torsion free prime gamma ring is either an isomorphism or an anti-isomorphism. AMS Mathematic...
متن کاملCentralizing automorphisms and Jordan left derivations on σ-prime rings
Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iraqi Journal of Science
سال: 2020
ISSN: 2312-1637,0067-2904
DOI: 10.24996/ijs.2020.61.10.24